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Abstract We present and analyze an unsupervised method for Word Sense Disambiguation (WSD). Our work is based on
the method presented by McCarthy et al. in 2004 for finding the predominant sense of each word in the entire corpus. Their
maximization algorithm allows weighted terms (similar words) from a distributional thesaurus to accumulate a score for each
ambiguous word sense, i.e., the sense with the highest score is chosen based on votes from a weighted list of terms related
to the ambiguous word. This list is obtained using the distributional similarity method proposed by Lin Dekang to obtain a
thesaurus. In the method of McCarthy et al., every occurrence of the ambiguous word uses the same thesaurus, regardless
of the context where the ambiguous word occurs. Our method accounts for the context of a word when determining the
sense of an ambiguous word by building the list of distributed similar words based on the syntactic context of the ambiguous
word. We obtain a top precision of 77.54% of accuracy versus 67.10% of the original method tested on SemCor. We also
analyze the effect of the number of weighted terms in the tasks of finding the Most Frecuent Sense (MFS) and WSD, and
experiment with several corpora for building the Word Space Model.
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1 Introduction

Word Sense Disambiguation (WSD) consists of de-
termining the sense expressed by an ambiguous word
in a specific context. This task has a particular im-
portance in document analysis[1] because the user may
be selecting a particular set of documents based on the
sense of word being used[2]. When building multilingual
querying systems, for example, the right translation of
a particular word must be chosen in order to retrieve
the right set of documents.

The task of WSD can be addressed mainly in two
ways: 1) supervised: applying techniques of machine-
learning trained on previously hand-tagged documents
and 2) unsupervised: learning directly from raw words
grouping automatically clues that lend to a specific
sense according to the hypothesis that different words
have similar meanings if they are presented in similar
contexts[3-4]. To measure the effectiveness of the state-
of-the-art methods for WSD, there is a recurrent event
called Senseval[5].

For instance, the results of Senseval-2 English

all-words task are presented in Table 1. This task
consists of 5000 words of running text from three Penn
Treebank and Wall Street Journal articles. The total
number of words to be disambiguated is 2473. Sense
tags are assigned using WordNet 1.7. The last column
in Table 1 shows whether a particular system uses man-
ually tagged data for learning or not. The best systems

Table 1. The Top-10 Systems of Senseval-2

Rank Precision Recall Attempted System

1 0.690 0.690 100.000 SMUaw

2 0.636 0.636 100.000 CNTS-Antwerp

3 0.618 0.618 100.000 Sinequa-LIA - HMM

4 0.605 0.605 100.000 MFS

5 0.575 0.569 98.908 UNED-AW-U2

6 0.556 0.550 98.908 UNED-AW-U

7 0.475 0.454 95.552 UCLA-gchao2

8 0.474 0.453 95.552 UCLA-gchao3

9 0.416 0.451 108.500 CL Research-DIMAP

10 0.451 0.451 100.000 CL Research-DIMAP (R)

11 0.500 0.449 89.729 UCLA-gchao
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are those which learn from previously manually tagged
data, however this resource is not always available for
every language, and it can be a costly resource to build.
Because of this, we will focus on unsupervised systems,
such as UNED-AW-U2 (Rank 4 in Table 1).

Choosing always the most frequent sense for each
word yields a precision and recall of 0.605. Comparing
this with the results in Table 1 shows that finding the
Most Frequent Sense (MFS) can be a good strategy, as
the baseline of 60% would be ranked amongst the first
4 systems. We verified this by obtaining the MFS from
WordNet. The senses in WordNet are ordered accord-
ing to the frequency data collected from the manually
tagged resource SemCor[6]. Senses that have not oc-
curred in SemCor are ordered arbitrarily.

Diana McCarthy et al. propose in [3] an algorithm to
find the prevalent (most frequent) sense for each word.
They first build a thesaurus using Lin’s method[4] and
data from a corpus such as the BNC (British National
Corpus). Then each ranked term k in the thesaurus
votes for a certain sense wsi of the word. The vote
uses the distributional similarity score which is then
weighted by the normalized similarity between the sense
and sense of k (ksj) which maximizes the score. For
detailed information about sense voting algorithm, see
Subsection 2.3.2.

Fig.1 illustrates this concept. For example, in “I
have donated my blow to the Peruvian blow bank”, the
top 5 weighted terms (similar words) from the Lin’s
thesaurus for the word bank are: commercial bank,
company, financial institution, firm, corporation. In
this example, the weighted terms reflect poorly the
sense of blow bank because they are biased towards the
most frequent sense (financial institution), thus, effec-
tively finding the MFS for all instances of each word.

The thesaurus is considering all contexts where the
word star has appeared previously, when building the
thesaurus; however, it is not considering the context of
the current sentence which includes key words for find-
ing the correct sense for this instance. Motivated by
this, we decided to perform Word Sense Disambiguation

Fig.1. Finding the predominant sense using a static thesaurus as

in McCarthy et al.

based on improving the finding of the MFS by consid-
ering this local context.

In our method, we obtain a list of synonyms or re-
lated words (quasi-synonyms) for each ambiguous word.
These weighted terms will determine the sense for a
word using the maximization algorithm presented in
[3]. This algorithm allows each quasi-synonym to accu-
mulate a score for each sense of the ambiguous word,
so that the sense which has the highest score is chosen.

The main contribution of our method is the algo-
rithm of obtaining quasi-synonyms. For this purpose
we collect all the contexts in a corpus where a specific
word is present, and then we use this information to
build a word space model where it is possible to mea-
sure the similarity between words of the training cor-
pus. The weighted terms of an ambiguous word are
those which are the closest by their contexts.

Weighted terms of any word change dynamically de-
pending on their local contexts and the corpus. For
example, in “The doctor cured my wounds with a
medicine”, the weighted terms for doctor would be:
physician, medicine, alcohol, lint; however, in “The
doctor published his latest research in the conference”,
the weighted terms of doctor would be scientific, aca-
demic, university, conference.

The method proposed by McCarthy et al. does not
consider the local context of the word to be disam-
biguated. The sense chosen as predominant for the
word to disambiguate depends solely on the corpus used
to build the thesaurus. We propose considering context
words to dynamically build a thesaurus of words related
to the word to be disambiguated. This thesaurus is dy-
namically built based on a Dependency Co-Occurrence

Fig.2. Our proposal: create dynamic thesauri based on the de-

pendency context of the ambiguous word.
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Data Base (DCODB) previously collected from a cor-
pus. Each co-occurrent-with-context word will vote —
as in the original method — for each sense of the am-
biguous word, finding the predominant sense for this
word, but in a particular context[7]. See Fig.2.

In Subsection 2.1 we explain how the Dependency
Co-Occurrence Data Base (DCODB) resource is built;
then we explain our way of measuring the relevance of
co-occurrences based on Information Theory in Subsec-
tion 2.2. In Subsections 2.3 and 2.4, we explain relevant
details of our method. In Subsection 3.1, we present a
simple comparison with the original method. Then, in
Subsection 3.2 we experiment with different corpora for
building the DCODB — and therefore the WSM and
the dynamic thesaurus. In Subsection 3.3 we evaluate
the impact of the weighting terms for finding the MFS
(Subsection 3.3.1) and for WSD (Subsection 3.3.2), and
finally we draw our conclusions.

2 Methodology

2.1 Building the Dependency Co-Occurrence
Data Base (DCODB)

We obtain dependency relationships automatically
using the MINIPAR parser. MINIPAR has been evalu-
ated with the SUSANNE corpus, a subset of the Brown
Corpus, and it is able to recognize 88% of the depen-
dency relationships with an accuracy of 80%[8]. Depen-
dency relationships are asymmetric binary relationships
between a head word and a modifier word. A sentence
builds up a tree which connects all words in it. Each
word can have several modifiers, but each modifier can
modify only one word[9-10].

We apply three simple heuristics for extracting head-
governor pairs of dependencies:

1) Ignore Prepositions — see Fig.3.

Fig.3. Ignoring prepositions.

Fig.4. Including sub-modifiers as modifiers of the head.

2) Include sub-modifiers as modifiers of the head —
see Fig.4.

3) Separate heads lexically identical, but with dif-
ferent part of speech. This helps to keep context sepa-
rated.

2.2 Construction of the Word Space Model
(WSM)

From the DCODB we build a word space model.
We use TF·IDF (term frequency · inverse document
frequency)[7] for weighting. The TF·IDF WSM model
is usually used for classification tasks and for measur-
ing document similarity. Each document is represented
by a vector whose number of dimensions is equal to the
quantity of different words that are in all documents.
Words not present in a particular document are filled
with zero values. In our method, a head is analogous to
a document, and its modifiers are dimensions of the vec-
tor which represents it. The value for each dimension
is a weight that reflects the number of co-occurrences
between a modifier and a head. Thus, a vector is rep-
resented as:

Vector (headn) = {(mod1, w1), (mod2, w2), . . . ,

(modn, wn)}
where: headn is the head word, modn is the name of the
modifier word, wn is the weight represented by the nor-
malized number of co-occurrences between modn and
headn.

The weight of co-occurrence is the dot product of the
normalized frequency of a head (TF) and its inverse fre-
quency (IDF). TF shows the importance of a modifier
with regard to the modified head, so that the weight
of the relationship increases when the modifier appears
more frequently with such head. TF is calculated with
the following formula:

fi,j =
freq i,j

max(freq l,j)

where freq i,j is the frequency of the modifier i with
head j , and max(freq l,j) is the highest frequency num-
ber of the modifiers of head j .

IDF shows the relevance of a modifier with regard
to the remaining heads in the database (DCODB), in
a way that the weight of a modifier decreases if it ap-
pears more often with every other head in the DCODB;
while it increases when it appears with a less number of
heads. This means that highly frequent modifiers help
little to discriminate when the head is represented by a
vector. IDF is calculated with the equation:

idf i = log
N

ni
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where N is the total number of heads, and ni is the
total number of heads which co-occur with modifier i.

2.3 Disambiguating Process

Once the database has been built, we are able to be-
gin the disambiguation process for a given word w in a
context C (made up of words C = {c1, c2, . . . , cn}). The
first step of this process consists of obtaining a weighted
list of terms related with w. The second step consists
of using these terms to choose a sense of w continuing
with the original algorithm proposed by McCarthy et
al.[3] The following subsections explain these steps in
detail.

2.3.1 Obtaining the Weighted List of Terms
Related with w

A word is related with another one when they are
used in similar contexts. In our method this context
is defined by syntactic dependencies. See Fig.2. Given
an ambiguous word, w, its dependencies c1, c2, c3, . . .,
form a vector w = 〈w, c1, c2, c3, . . . , wj , . . .〉, which is
compared with all vectors ri = 〈ri,1, ri,2, . . . , ri,j , . . .〉
from the WSM using the cosine measure function:

cos measure(w, ri) =
w · ri

|w| × |ri|

=

∑n
j=1 wj × ri,j√∑n

j=1(wj)2 ×
√∑n

j=1(ri,j)2
.

The value obtained is used as a similarity weight for
creating the weighted list of related terms. Note that
this comparison is subject to the data sparseness prob-
lem because the number of modifiers of an ambiguous
word is usually between 0 and 5 — considering only one
level of the syntactic tree — whereas the dimension of
most vectors in the WSM are far higher. To be able
to compare both vectors, the remaining dimensions for
the ambiguous word with its context are filled with ze-
roes as in values for o1, o2, o3, . . . , on in Table 2. Also
see Table 2 for an example of calculation of the cosine
measure. Given the vector w formed by the word w
and its context words (based on dependency relation-
ships from the sentence where w is found), the WSM
is queried with all the rn words to compare with each
vector r. For example, the cosine measure between w
and r3 is given by:

cos measure(w, r3) =[
(1 · 4) + (1 · 3) + (1 · 1) + (1 · 0)+

(0 · 0) + (0 · 0) + (0 · 4) + (0 · 4)
]/

(√
12 + 12 + 12 + 12 + 02 + 02 + 02 + 02+√

42 + 32 + 12 + 02 + 02 + 02 + 42 + 42
)
.

Table 2. Fragment of the WSM Showing Cosine

Measure Calculation①

c1 c2 c3 · · · cn o1 o2 o3 · · · om cos

w 1 1 1 · · · 1 0 0 0 · · · 0 1.00

r1 1 6 2 · · · 0 0 0 3 · · · 0 0.99

r2 0 4 1 · · · 3 4 1 1 · · · 0 0.93

r3 4 3 1 · · · 0 0 0 4 · · · 4 0.83

· · · · · · · · ·
r13 0 0 2 · · · 4 0 0 1 · · · 5 0.68

· · · · · · · · ·

2.3.2 Sense Voting Algorithm

Here we describe our modifications to the sense vo-
ting algorithm proposed by McCarthy et al.[3]. This al-
gorithm allows each member of the list of related terms
(dynamic — in our proposal, or static — in the original
form — thesaurus) to contribute for a particular sense
of the ambiguous word w. The weight of the term in
the list is multiplied by the semantic similarity — see
previous section — between each of the senses of a term
risj and the senses of the ambiguous word wsk. The
highest value of semantic distance determines the sense
of w for which the term ri votes. Once that all terms
ri have voted (or a limit in the number of neighbors
has been reached), the sense of w which received more
votes is selected.

This algorithm allows each weighted term to accu-
mulate a score for each sense of the polysemous word.
The sense with the highest score is selected. The fol-
lowing equations from McCarthy et al. show how the
weighted term list accumulates a score for a sense. We
use the same equations here, but, as shown in the pre-
vious section, the construction of the Term List is dif-
ferent.

Weight(wsi) =
∑

tj∈TLw

sim(w, tj)×

pswn(wsi, tj)∑
wsk∈senses(w) pswn(wsk, tj)

.

In these equations, w is the ambiguous word, wsi is
each one of the senses of w, TLw is the weighted list
of terms, and tj is each term. P (w, tj) represents the
semantic similarity between w and tj . Note that w and
t are words. The similarity value is calculated using
the WSM[1]. The second term of the weight equation
normalizes the weight of wsi using all the senses of w
and the current tj .

①We have used simple digits in place of realistic scores to demonstrate the cosine measure.
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The function pswn returns the sense of a word that
has the greatest semantic similarity to a particular
sense. For example, pswn(wsi, tj) compares all the
senses of the quasi-synonym tj with wsi and obtains
the sense of tj which has more semantic similarity with
regard to wsi. In the following subsection we describe
the measure of similarity used in this algorithm.

2.4 Similarity Measure

To calculate the semantic distance between two
senses we use WordNet::Similarity[11]. This package
is a set of libraries which implement similarity mea-
sures and semantic relationships in WordNet[12-13]. It
includes similarity measures proposed by Resnik[14],
Lin[4], Jiang-Conrath[15], Leacock-Chodorow[16] among
others. Following McCarthy et al. approach, we have
chosen the Jiang-Conrath similarity measure as well.
The Jiang-Conrath measure (jcn) uses exclusively the
hyperonym and hyponym relationships in the WordNet
hierarchy, and this is consistent with our tests because
we are working only on the disambiguation of nouns.
The Jiang-Conrath measure obtained the second best
result in the experiments presented by Patwardhan et
al.[6] In that work they evaluate several semantic mea-
sures using the WordNet::Similarity package. The best
result was obtained with the adapted Lesk measure[6],
which uses information of multiple hierarchies and is
less efficient.

The Jiang-Conrath measure uses a concept of in-
formation content (IC) to measure the specificity of
a concept. A concept with a high IC is very spe-
cific — for example dessert spoon — while a concept
with a lower IC is more general, such as human being.
WordNet::Similarity uses SemCor to compute the IC
of WordNet concepts. The Jiang-Conrath measure is
defined with the following formula:

dist jcn(c1, c2) = IC (c1) + IC (c2)− 2× IC (lcs(c1, c2))

where IC is the information content, lcs (lowest com-
mon subsumer) is the common lower node of two con-
cepts.

3 Experiments

In this section we describe all the experiments we
have made. In Subsection 3.1 we replicate the method
proposed in McCarthy et al. and compare it with our
method. In Subsection 3.2 we describe the corpus used
for training and testing the WSM we have built and
also give some experimental results about WSD. Fi-
nally in Subsection 3.3 we describe deeply the impact
of weighted terms in the WSD algorithm we have pro-
posed.

3.1 Comparison with the Original Method

McCarthy et al. report 64% using a term list from a
static thesaurus calculated using the Lin method. In or-
der to directly compare the performance of our method
with the original method of McCarthy et al., we im-
plemented their algorithm and compared it against our
method. We varied the maximum number of neighbors.
We used the thesaurus built by Lin[4] for their method
and ours (for building the DCODB), and we evaluated
with the SemCor corpus. The results are shown in Ta-
ble 2. Traditionally, literature (v.gr., Senseval results)
reports performance considering the “disambiguation”
of monosemous words together with polysemous words.
Monosemous words represent 25% of the nouns of Sem-
Cor (97 nouns from 387). McCarthy et al. results also
include monosemous words, so that, in order to allow
a direct comparison, we included results for all the 387
nouns in the experiments of this section — monosemous
and polysemous: the with column in Table 3. The with-
out column shows results for the polysemous words (290
nouns) only. The forthcoming subsections will report
results without considering monosemous words.

Table 3. Comparison with the Original Method

by McCarthy et al.

Monosemous

Neighbors Original Method Our Method

Without With Without With

10 53.10 64.86 64.23 73.13

20 56.06 67.10 69.44 76.94

30 54.45 66.14 67.36 75.66

40 49.47 62.43 66.43 74.87

50 54.45 66.14 67.80 75.93

100 49.82 62.83 69.86 77.54

Average 52.89 64.92 67.52 75.68

3.2 Role of WSM — Using Different Corpora

We created a WSM using 90% of SemCor corpus
(we used it only the raw text part of SemCor for train-
ing). We evaluated the model with the remaining 10%
of SemCor and Senseval-2 (all words nouns only). We
chose these corpora to be able to compare with related
work such as McCarthy et al.

We created two WSMs from raw text separately:
1) Using 90% of untagged SemCor;
2) Using British National Corpus.
We evaluated separately against:
1) 10% of tagged SemCor;
2) Senseval-2.
When using a corpus for creating a WSM, the se-

mantic tags of word senses were not considered. These
tags refer to specific synsets in WordNet.
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In these experiments we disambiguated only nouns.
For evaluating, we considered the number of weighted
terms to choose the right sense. For most of the com-
parisons, we conducted experiments for the first 10, 20,
30, 40, 50, 60, 70, 100, 200, 500, 1000 and 2000 words
from the weighted list of quasi-synonyms.

In both experiments, general results for 10% of the
remaining of SemCor corpus were better than for the
Senseval-2 corpus. In the first experiment, the best
result using SemCor evaluation was 69.86% precision
and in the second one 73.07% precision (see Table 4).
The results of the second experiment (evaluation with
Senseval-2), are better than all the unsupervised me-
thods presented in Senseval-2 (see Table 1). For a di-
rect comparison with the McCarthy et al. algorithm,
see Subsection 3.1.

Table 4. Precision, Training with SemCor and BNC

Evaluation with SemCor and Senseval-2

Tested on (tagged) 10% SemCor Senseval-2

Trained on (untagged) 90% SemCor BNC 90% SemCor BNC

10 64.23 73.07 44.22 51.35

20 69.44 60.00 44.77 52.88

30 67.36 65.27 45.91 53.33

40 66.43 65.16 45.76 53.33

50 67.80 63.80 45.55 53.33

60 68.15 63.41 48.12 55.36

70 69.86 63.84 49.84 57.22

100 69.86 62.33 48.80 56.02

200 66.75 61.58 49.05 57.57

500 65.89 61.08 49.10 58.79

1000 65.06 61.08 44.55 54.27

2000 62.76 61.08 41.05 51.75

Average 61.73 58.38 42.97 54.60

The best results were yielded when building the dy-
namic thesaurus from the BNC corpus. This might be
mainly because BNC is a corpus greater than SemCor
and Senseval-2. We expected that using the same cor-
pus for disambiguating itself would yield better results,
which in general is the case (see the first two columns
under “10% SemCor”), however the top performance
on such case is when using 10 neighbors and building
the WSM with BNC. A bigger corpus produces richer
thesauri which can provide words more adequately for
each context.

3.3 Role of Weighted Terms

The purpose of this subsection is to analyze the be-
haviour of the maximization algorithm, whose role is
the same in both our and McCarthy et al.’s work: to
assign a sense to the ambiguous instance considering
each one of the words of the weighted term list (be it

dynamic or static). The sense chosen by the maximiza-
tion algorithm for each word is determined not only by
the number of weighted terms which it processes, but
also for the quality of the semantic relationship between
each one of the members of the list and the ambiguous
instance.

McCarthy et al. used the first 10, 20, 50 and
70 weighted terms and concluded that the number of
weighted terms is not an important feature that influ-
ences the performance of their method, thus, they al-
ways used the first 50 weighted terms[3] given by the
Lin’s thesaurus[4]. In our experiments (see Table 4),
the best result was obtained using the first 10 weighted
terms for 10% SemCor and 500 for Senseval-2. There is
an important difference in the results when the number
of weighted terms varies.

McCarthy et al. tested their algorithm using static
lists of 10, 30, 50 and 70 weighted terms, given by
the Lin’s thesaurus, and concluded that the number of
words does not have an important influence given the
results from the maximization algorithm. If we consider
that each list is ranked, that is, the top-n words used by
the algorithm are those who have more semantic rela-
tionship with regard to the ambiguous instance, we can
be aware of the fact that the sense chosen by the maxi-
mization algorithm for an ambiguous instance does not
depend only on the number of words, but also on the
semantic relationships that each one of them has with
the ambiguous word. This relationship is established
by the Lin’s thesaurus[4], as this is the lexical resource
which provides the weighted list for each ambiguous in-
stance. We use such resource in the same way that it
is used in the experiments of McCarthy et al.

The maximization algorithm, which tags an ambigu-
ous instance, can be applied to obtain MFS and WSD.
Since our goal is to find the impact of the weighted
term on such tasks, we performed both experiments as
follows:
• impact of the weighted terms for finding the MFS;
• impact of the weighted terms in WSD.

3.3.1 Impact of the Weighted Terms for Finding the
Most Frequent Sense

In order to determine the impact of this algorithm
for detecting the MFS, we use as test corpus the MFS
of the nouns found in SENSEVAL-2 English all-words,
whose ambiguous instance has occurred at least twice,
obtaining a total of 34 polysemous nouns, where each
one has at least two senses (see Table 5).

In addition, we have compared the MFS that the
maximization algorithm chooses for each one of the 34
nouns which the MFS found in WordNet — these were
calculated by measuring the frequency of the senses
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Table 5. Nouns from SENSEVAL-2

Token MFS Senses Token MFS Senses

church 2 4 individual 1 2

field 4 13 child 2 4

bell 1 10 risk 1 4

rope 1 2 eye 1 5

band 2 12 research 1 2

ringer 1 4 team 1 2

tower 1 3 version 2 6

group 1 3 copy 2 3

year 1 4 loss 5 8

vicar 3 3 colon 1 5

sort 2 4 leader 1 2

country 2 5 discovery 1 4

woman 1 4 education 1 6

cancer 1 5 performance 2 5

cell 2 7 school 1 7

type 1 6 pupil 1 3

growth 1 7 student 1 2

from the SemCor corpus (manually tagged).
For each one of the words listed in Table 4, we ap-

plied the maximization algorithm, using 1, 2, 3, 4, 5, 6,
8, 10, 15, 20, 30, 40, 50, 100, 120, 150, 200, 230, 260,
300, 330, 360 and 400 top weighted terms provided by
the Lin’s Thesaurus. We found the following issues:
• The MFS of the words rope, tower, vicar, woman,

cancer, cell, type, individual, research, team, copy, colon,
leader and discovery were always correctly found by our
algorithm, no matter how many weighted terms were
used — see Table 6.
• The MFS of the words band, ringer, year, sort,

child, version, loss, performance and school were deter-
mined incorrectly, no matter the number of weighted
terms used in the process — see Table 6.

The average of the number of senses from nouns
whose MFS is always found correctly is less than the
number of those whose MFS is always found incorrectly
— see Table 7.

The remaining MFS of the 11 remaining nouns:
church, field, bell, group, country, growth, risk, eye, ed-
ucation, pupil, and student, were determined correctly
and incorrectly, depending on the number of weighted
terms, as it can be seen in Table 7 and Fig.3.

In Table 8,
√

means correct and × incorrect. It
shows only up to 200 weighted terms for these 11 words.

Table 6. General Statistics for Automatically

Finding of the MFS

Nouns (%)

Total number of nouns evaluated 34 100.00

Successful MFS always found, no matter
how many weighted terms were processed

14 41.18

Unsuccessful MFS always found, no mat-
ter how many weighted terms were pro-
cessed

9 26.47

Nouns whose result depends of the pro-
cessed weighted terms

11 32.35

Table 7. SENSEVAL-2 Nouns Predominant Sense

Predominant Sense Predominant Sense

Always Correct Always Incorrect

Ambiguous Word Senses Ambiguous Word Senses

rope 2 band 12

tower 3 ringer 4

vicar 3 year 4

woman 4 sort 4

cancer 5 child 2

cell 7 version 2

type 6 loss 8

individual 1 performance 5

research 2 school 7

team 2

copy 3

colon 5

leader 2

discovery 4

Average 3.50 5.33

Table 8. Per-Word Disambiguation Analysis

Number of Weighted Terms

1 2 3 4 5 6 8 10 15 20 30 40 50 70 100

church
√ × × × × × √ × √ √ √ √ √ √ ×

field × × × × × × × × × × × × × × ×
bell

√ √ √ √ √ √ √ √ √ √ √ × √ × ×
group

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

country
√ √ √ × × × × × × × × × × × ×

growth
√ × × √ √ √ √ √ √ √ √ √ √ √ √

risk × × √ √ √ √ √ √ √ √ √ √ √ √ √

eye × × √ √ √ √ √ √ √ √ √ √ √ √ √

education
√ √ √ × × × × × × × × × √ √ √

pupil
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

student
√ × × × √ √ √ √ √ √ √ × × × ×
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We could find a slightly better performance when using
more than 200 weighted terms only for 7 words. We
experimented with 230, 260, 300, 330 and 360 weighted
terms — see Fig.4.

From the evaluated 34 nouns, 23 are invariant to
the number of weighted terms used by the maximiza-
tion algorithms, that is, 14 of them are always disam-
biguated properly, and 9 are always not. The remaining
11 are affected by the number weighted terms selected,
as shown in Fig.3 and Fig.4. From the first graph, pre-
cision varies from 45.45% and 63.34%, whereas for the
second values fluctuate between 42.85% and 85.71%.

The irregularity of Figs. 5 and 6, and the results
shown in Table 7 suggest that the role of the weighted
terms in the maximization algorithm to obtain the MFS
is not as important as it might seem from McCarthy et
al., as only 32.5% of the nouns have variations when
finding their MFS by using the weighted terms from
the Lin’s thesaurus. Fig.3 also suggests that the best
results is obtained with 15, 20 and 30 weighted terms.
Results tend to be stable when more than 100 weighted
terms are used. It is interesting to note that for these
experiments performance with using only 1 weighted
term is similar to that of using 100 or more weighted
terms. We believe that this should not be a rule, as
we expected that using only one word would not give
enough evidence for the maximization algorithm to per-
form consistently.

Fig.5. Performance of the maximization algorithm for finding the

MFS (11 words).

Fig.6. Performance of the maximization algorithm for finding the

MFS (7 words).

Fig.6 shows additional information. In this figure,
it is possible to see that, while the weighted terms in-
crease, precision tends to be stable. Here we can see
that we have the same results for 100, 120, 150 and 200
weighted terms.

3.3.2 Impact of Weighted Terms on WSD

To determine the impact of this algorithm on Word
Sense Disambiguation, we used SENSEVAL-2 English
all-words as evaluation corpus. This algorithm was
originally created to obtain the predominant senses us-
ing raw text as source of information; however, it is
suitable to be applied to WSD if we use the predomi-
nant sense as answer for every ambiguous case. Fig.7
shows the obtained results. We exclude monosemous
words for this evaluation, so that results might seem
low. For experiments counting the monosemous words,
please refer to Section 3.

Fig.7. Using the MFS for WSD. Evaluated on SENSEVAL-2.

The best result was 56.74% for 20 weighted terms,
whereas the worst result was 49.28% when we used 40
weighted terms, nevertheless with 50 weighted terms
the results increment. The second worst result was ob-
tained when all the weighted terms were used — the
range of this value is between 80 and 1000, depending
on each word.

Similar to MFS, there is not a clear pattern about
the number of weighted terms in WSD task. The best
results are usually between 8 and 50 weighted terms,
and results tend to drop while the number of weighted
terms is increased beyond.

4 Conclusions

The method presented disambiguates a corpus more
precisely when trained with a richer corpus, as shown
by our experiments when training with the BNC cor-
pus used as raw-text, and evaluating with SemCor. We
compared against obtaining the most frequent sense
from the same set of SemCor and evaluating with the
remaining 10%. We obtained a precision of 77.54%
against 62.84% of the baseline which uses supervised
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information, while our method is unsupervised.
In [17-18], it is shown that the maximization algo-

rithm proposed by McCarthy et al., can be applied to
most frequent sense detection and word sense disam-
biguation. Such algorithm processes a set of weighted
terms given by the Lin’s thesaurus, and each of them
votes for a sense of the ambiguous instance, so that the
sense with the highest number of votes is chosen as the
most frequent sense. When the maximization algorithm
is applied for detecting the most frequent sense, roughly
a third part (32.35%) of the nouns in SENSEVAL-2 En-
glish all-words task (used for this experiment) are af-
fected by the number of the weighted terms used, i.e.,
the success in the detection of the most frequent sense
depends on the number of weighted terms used by this
algorithm.

The most frequent sense in 41% of the processed
nouns is always determined correctly, no matter how
many weighted terms are used (1, 2, 3, 4, 5, 6, 8, 10,
15, 20, 30, 40, 50, 70, 100, 120, 150, 200, 230, 260, 300,
330, 360 and 400) by the maximization algorithm. In
addition, the most frequent sense of 26% of the nouns is
always determined incorrectly, without considering the
feature of weighted terms.

In conclusion, the number of weighted terms pro-
vided by the Lin’s thesaurus, which are used by the
maximization algorithm, is not the only determining
characteristic for finding the most frequent sense. An-
other characteristic, to be studied further, is the se-
mantic quality of the weighted terms, especially, the
semantic relationship which exists between each one of
them and the ambiguous word. For our experiments,
we used the measure provided by the Lin’s thesaurus.
To explore this characteristic, other sources of informa-
tion are needed.

Using the MFS for WSD has been proved to be a
baseline, which in some cases is not even surpassed by
unsupervised systems; however, this can be regarded
best as a back-off technique, since no information of
context is considered.

As a future work, we plan to use a manually ob-
tained thesaurus as a source for the top-n weighted
terms. However, this kind of resource would not in-
clude a quantified measure of the semantic relationship
between different words — or, put in other words, all
measures are binary, there is a relationship, or there is
not.

Focusing on the third part of words, which are af-
fected by the number of weighted terms to obtain their
most frequent sense by this maximization algorithm, we
can particularly conclude that with a greater amount
of related words, the results are improved, which agrees
with the theoretical background of this algorithm.

On the optimum number of weighted terms we found
that this number varies irregularly, so that we cannot
conclude globally that the optimum number is always
the same. In addition, terms from the weighted list (our
dynamic thesaurus) are not always clearly related be-
tween them. We expect to build a resource to improve
the semantic quality from such terms.

From the WSD experiment that we presented, we
can conclude that when using a greater amount of
weighted terms, precision decreases. This, of course,
does not reflect the real impact of the weighted terms
in WSD. For this study we suggest selecting the ele-
ments of the list of weighted terms, discarding those
that are not related with the context of the ambiguous
word. Using this selection on the Lin’s thesaurus is part
of our plan for future work.

Finally, it is difficult to determine the main factor
that has a greater impact in the proposed disambigua-
tion method: the process of obtaining a weighted list of
terms (the dynamic thesaurus), or the maximization al-
gorithm. This is because the DCODB sometimes does
not provide terms related with a word; additionally, the
definitions for each sense of WordNet are sometimes
very short. Moreover, as it has been stated previously,
for several tasks the senses provided by WordNet are
very fine-graded, so that a semantic measure might be
not accurate enough.
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born in Perú in 1976. He obtained his
Master’s degree in computer science
(with honors) in 2005 from the Cen-
ter for Computing Research (CIC)
of the National Polytechnic Institute
(IPN), Mexico, and his Ph.D. degree
in computer science (with honors) in
2009 at the same Center. Since 2010
he is an associated professor and re-

searcher at San Pablo Catholic University in Arequipa.
Peru. He works as project leader at Research and Software
Development Center of the San Agustin National University
in Arequipa, Peru.

Hiram Calvo was born in Mex-
ico in 1978. He obtained his Master’s
degree in computer science in 2002
from National Autonomous Univer-
sity of Mexico (UNAM), with a the-
sis on mathematical modeling, and
his Ph.D. degree in computer science
(with honors) in 2006 from CIC of
IPN, Mexico. Since 2006 he is a lec-
turer at CIC of IPN. He was awarded

with the Lázaro Cárdenas Prize in 2006 as the best Ph.D.
candidate of IPN in the area of physics and mathemat-
ics. This Prize was handed personally by the President of
Mexico. Currently he is a visiting researcher at the Nara
Institute of Science and Technology, Japan. He is a JSPS
fellow.

Alexander Gelbukh holds a
honors M.Sc. degree in mathematics
from the Moscow State Lomonosov
University, Russia, 1990, and Ph.D.
degree in computer science from the
All-Russian Institute for Scientific
and Technical Information, Russia,
1995. He has been a research fellow
at the All-Union Center for Scientific
and Technical Information, Moscow,

Russia; distinguished visiting professor at Chung-Ang Uni-
versity, Seoul, Korea, and is currently research professor and
head of the Natural Language Processing Laboratory of the
Center for Computing Research of the National Polytech-
nic Institute, Mexico, and invited professor of the National
University, Bogota, Colombia. He is an academician of the
Mexican Academy of Sciences, National Researcher of Mex-
ico, and the executive board secretary of the Mexican So-
ciety for Artificial Intelligence. His recent awards include
the prestigious Research Diploma from the National Poly-
technic Institute, Mexico. His main areas of interest are
computational linguistics and artificial intelligence. He is
author, co-author or editor of more than 400 publications;
member of editorial board or reviewer for a number of inter-
national journals. He has been program committee member
of about 150 international conferences and Chair, Honorary
Chair, or Program Committee Chair of more than 20 in-
ternational conferences, as well as principal investigator of
several projects, funded governmentally or internationally,
in the field of computational linguistics and information re-
trieval.

Kazuo Hara was born in Tokyo,
Japan, in 1971. He received his Mas-
ter’s degree of engineering from the
University of Tokyo, and his Ph.D.
degree from Nara Institute of Science
and Technology. His research inter-
ests include natural language pro-
cessing aiming for information ex-
traction, such as coordinate structure
analysis and word sense disambigua-

tion. Previously he was the team leader in Sankyo Co.,
LTD, the 2nd largest pharmacy company in Japan, where
he composed statistical analysis plans and performed statis-
tical hypothetical testing for new drug candidate composi-
tions in clinical trials. He has experience in bioinformatics
and statistics as well. Currently he is a postdoctoral re-
searcher at the Nara Institute of Science and Technology,
Japan.


